首页 > 考生写作 > 教学计划

高二数学教学计划

时间:2025-03-13 09:53:40
高二数学教学计划(15篇)

高二数学教学计划(15篇)

人生天地之间,若白驹过隙,忽然而已,相信大家对即将到来的工作生活满心期待吧!让我们一起来学习写计划吧。想学习拟定计划却不知道该请教谁?下面是小编为大家整理的高二数学教学计划,欢迎大家借鉴与参考,希望对大家有所帮助。

高二数学教学计划1

教学目标

1.通过实例理解样本的数字特征,如平均数,方差,标准差.

2.能根据实际问题的需求合理地选取样本,从数据样本中提取基本的数字特征,并作出合理的解释.

重点难点

重点(1)用算术平均数作为近似值的理论根据.(2)方差和标准差刻画数据稳定程度的理论根据.

难点:(1)平均数对总体水平进行评价时的可靠性(和中位数和众数之间的联系).(2)通过实例使学生理解样本数据的方差,标准差的意义和作用.

教学过程

算术平均数和加权平均数

(一)问题情境

某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度.全班同学两人一组,在相同条件下进行测试,得到下列实验数据(单位:m/s2):

9.62 9.54 9.78 9.94 10.019.66 9.88

9.68 10.32 9.76 9.45 9.99 9.81 9.56

9.78 9.72 9.93 9.94 9.65 9.79 9.42 9.68 9.70 9.84 9.90

问题1:怎样用这些数据对重力加速度进行估计?

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数(median).

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数

一组数据中出现次数最多的那个数据叫做这组数的众数,

算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数.

问题2:用这些特征数据对总体进行估计的优缺点是什么?

21世纪教育网

用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系.对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响.

用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”.

用中位数作为一组数据的代表,可靠性也较差,但中位数也不受极端数据的影响,也可选择中位数来表示这组数据的“集中趋势”.

平均数、中位数、众数都是描述数据的“集中趋势”的“特征数”,它们各自特点如下:

任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具备的性质,也正是这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.

问题3:我们常用算术平均数 (其中ai(i=1,2,…,n)为n个实验数据)作为重力加速度的近似值,它的依据是什么呢?

处理实验数据的原则是使这个近似值与实验数据之间的离差尽可能地小,我们考虑(x-a1)2+(x-a2)2+…+(x-an)2,当x为何值时,此和最小.

(x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+ a12+a22+…+an2.

所以当x=a1+a2+…+ann时离差的平方和最小.

(二)数学理论

故可用x=a1+a2+…+ann作为表示这个物理量的理想近似值,称其为这n个数据a1+a2+…+an的平均数或均值一般记为:

-a=a1+a2+…+ann.

(三)数学应用

例1 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.

甲班:

112 86 106 84 100 105 98 102 94 107

87 112 94 94 99 90 120 98 95 119

108 100 96 115 111 104 95 108 111 105

104 107 119 107 93 102 98 112 112 99

92102 93 84 94 94 100 90 84 114

乙班

116 95 109 96 106 98 108 99 110 103

94 98 105 101 115 104 112 101 113 96

108 100 110 98 107 87 108 106 103 97

107 106 111 121 97 107 114 122 101 107

107 111 114 106 104 104 95 111 111 110

分析:我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可.

解:用科学计算器分别求得

甲班的平均分为101.1,

乙班的平均分为105.4,

故这次考试乙班成绩要好于甲班.

此处介绍Excel的处理方法.

例2:已知某班级13岁的同学有4人,14岁的同学有15人,15岁的同学有25人,16岁的同学有6人, 求全班的平均年龄.

解:13×4+14×15+15×25+16×64+15+25+6

=13×450+14×1550+15×2550+16×650

这里的450,1550,2550,650,其实就是13,14,15,16的频率.

[数学理论]一般地若取值为x1,x2,…xn的频率分别是p?1,p2,…pn,则其平均数为x1p1+x2p2+…+xnpn.

睡眠时间 人 数 频 率

[6,6.5) 5 0.05

[6.5,7) 17 0.17

[7,7.5) 33 0.33

[7.5,8) 37 0.37

[8,8.5) 6 0.06

[8.5,9] 2 0.02

合计 100 1

例3.下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间.

分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间.由于每组中的个体睡眠时间只是一个范围,可 ……此处隐藏14593个字……你能写出求解一般的二元一次方程组的步骤吗?

上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法

对于一般的二元一次方程组 可以写出类似的求解步骤:

第一步,①×b2-②×b1,得 ;③

第二步,解③,得 .

第三步,②×a1-①×a2,得 ;④

第四步,解④,得 ;

第五步,得到方程组的解为

(高斯消去法)

思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?

思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.

你认为:

(1)这些步骤的个数是有限的还是无限的?

(2)每个步骤是否有明确的计算任务?

总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.

算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.

广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算

法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.

(三)例题剖析,巩固提高

例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?

算法:

第一步,用2除7,得到余数1,所以2不能整除7.

第二步,用3除7,得到余数1,所以3不能整除7.

第三步,用4除7,得到余数3,所以4不能整除7.

第四步,用5除7,得到余数2,所以5不能整除7.

第五步,用6除7,得到余数1,所以6不能整除7.

因此,7是质数.

课堂练习1:

整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?

思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.

(1)用i表示2~88中的任意一个整数,并从2开始取数;

(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;

(3)这个操作一直进行到i取88为止.

你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?

算法设计:

第一步,令i=2;

第二步,用i除89,得到余数r;

第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;

第四步,判断“i>88”是否成立?若是,则89是质

数,结束算法;否则,返回第二步.

探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?

在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?

例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?

算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。

S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。

S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只

S4 最后确定小鸡的数量:17-7=10只.

算法2:S1 首先设 只小鸡, 只小兔。

S2 再列方程组为:

S3 解方程组得:

S4 指出小鸡10只,小兔7只。

算法3:S1 首先设 只小鸡,则有 只小兔

S2 列方程

S3 解方程得 ,则

S4 指出小鸡10只,小兔7只.

算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿

S2 有小兔 只

S3 有小鸡 只

S4 指出小鸡10只,小兔7只.

算法5:S1 有小兔 只

S2 有小鸡 只

二分法:

对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.

例3(课本P4例2):写

出用“二分法”求方程 的近似解的算法.

算法分析:

令f(x)= ,则方程 的解就是函数f(x)的零点.

第一步,令f(x)= ,给定精确度d.

第二步,确定区间[a,b],满足f(a)·f(b)<0.

第三步,取区间中点 .

第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].

将新得到的含零点的区间仍记为[a,b];

第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.

(四)课堂小结,巩固反思

1、算法的主要特点:

(1)有限性:一个算法在执行有限步后必须结束;

(2)确切性:算法的每一个步骤和次序必须是确定的;

(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.

(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.

2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:

(1)符合运算规则,计算机能操作;

(2)每个步骤都有一个明确的计算任务;

(3)对重复操作步骤作返回处理;

(4)步骤个数尽可能少;

(5)每个步骤的语言描述要准确、简明.

《高二数学教学计划(15篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式